If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-7x=25
We move all terms to the left:
7x^2-7x-(25)=0
a = 7; b = -7; c = -25;
Δ = b2-4ac
Δ = -72-4·7·(-25)
Δ = 749
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{749}}{2*7}=\frac{7-\sqrt{749}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{749}}{2*7}=\frac{7+\sqrt{749}}{14} $
| -25+4x=2x+21 | | -3(x+4)+4x=12 | | 13-n=56 | | 8-2(x+3)=4x+1 | | Y=16x-0.2x^2-100 | | s^2+3s=-1 | | A(2x+3)=9x+12x | | -2x-60=-6x | | 5=3-8x+2 | | 4-a=a | | 12(x-5)=36 | | 7(6-2a)=5(-3a+1 | | x÷3-5=-7 | | 13+2x+x+14=9 | | t2=3.03 | | 13•x=117 | | 2g+9=0 | | -6=s+6 | | _x4=28 | | -3m+11=2m-14 | | 1/6d+2/3=1-4(d-2) | | t2 = 3.03 | | -8v=-10-7v | | x^2−8/5x+16/25=0 | | 2x/x^2-9=1/x | | (X-3)+x+(x+4)=196 | | x+4+2=2x+4 | | 8x-11+4x+7=90 | | -6y+17=3y(y-31/3) | | t+3t+7=4t-7 | | 10x-2=3x+23 | | K/7=32/56k= |